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w=u+j[1 =F, k')/E(k)] (87)
k' = V1 — ke (88)
sin 0’ = (1/k)v/1 — 1/ (89)

Egs. (87), (89), (83), and (81) give the implicit relation
between x and v along the matching surfaces.

Fig. 11 shows the 2 plane for the even mode operation
of the coupled strip line. From it, it can be seen that the
t plane, the ¢’ plane, and the w plane sketches are identi-
cal with the odd mode sketches, except for replacing
ko by k.. Egs. (89) and (86) apply, and by analogy with
(83),

= [K(k)/K(k/)][1 — F0, ko)/K(k)] + j1. (90)
Along v=0, by analogy with (87),
w=u-+ j[1 —FO, k)/K(k.)]. (91)

Eq. (79) applies to Fig. 11 as well as to Fig. 10. When
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it is integrated, and boundary conditions are applied,
the result is

= (¢/m) In [V¥/p + V/(t'/p) — 1),
Along y=0 this can be written as
1 — %, cosh? mx/a

o= . (93)
1-+ k. cosh? ws/2a

(92)

By considering the value of #’ at x=s5/2 and at x=(w
+s/2) the expression for k, can be obtained:

k. = (tanh mw/2a)(tanh 7(w =+ 5)/2a). (94)

Egs. (91), (89), (83), and (93) serve to give the implicit
relation between x and v along y=0.
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The Impedance of a Wire Grid Parallel to a
Dielectric Interface*
JAMES R. WAITt

Summary—Analysis is given for the problem of reflection of a
plane wave at oblique incidence on a wire grid which is parallel to a
plane interface between two homogeneous dielectrics. It is assumed
that the wire grid is a periodic structure and consists of thin cylindri-
cal wires of homogeneous material. The equivalent circuit is derived
where it is shown that the space on either side of the interface can
be represented by a transmission line, and the grid itself is repre-
sented by a pure shunt element across one of the lines.

INTRODUCTION
THERE HAVE been many investigations of the

electromagnetic properties of thin parallel wires

composed of conductive material. The first quan-
titative study was made by Lamb?! in 1898 who con-
sidered the plane wave incident normally on the grid.
He showed that if the diameter, 2¢, of the parallel
wires was small, the reflection and transmission could
be varied by changing the spacing. In 1914, von Igna-
towskyv? made a very exhaustive analysis of the scatter-
ing of incident plane waves by single metallic grids

* Manuscript received by the PGMTT, June 1, 1956.

T National Bureau of Standards, Boulder, Colo.
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surrounding infinite medium. He showed that this shunt
impedance was proportional to log (d/2ma)<-F(0, d)
where F is a correction factor which is a function of
angle of incidence 8 and the spacing d.

Recently it has been suggested by Jones and Cohn'?
that a wire grid, if suitably located near an air-inter-
face of a dielectric lens, can effectively simulate a quar-
ter-wave matching network. Considering the case where
the wire grid is embedded within the lens medium of
intrinsic impedance Z, it can be readily shown!? that
the conditions for the matching the lens to the exterior
(air) medium of intrinsic impedance Z’ are

X,/Z = tan 2¢
and
Z'/Z = tan? ¢

where ¢ is the “electrical” distance in radians from the
lens surface to the embedded grid whose impedance is
Zy=4 X,

The use of MacFarlane’s expression for Z, in the above
application is not strictly correct as the F(8, d) function
that he rigorously computed is only valid in the case
where the grid is in an infinite medium. For dielectric
lens matching, the value of ¢ is usually of the order of
7/4 radians corresponding to an air-lens interface to
grid separation of the order of  wavelength. It will be
shown that some error can be introduced if account is
not taken of the interface. The following analysis treats
fully the problem of a parallel wire grid embedded in a
homogeneous dielectric at a fixed distance from a plane
interface. While the analysis employs the terminology
appropriate to lossless dielectrics, the extension to dissi-
pative media on either or both sides of the interface is
effected by regarding the respective dielectric constants
to be complex.

OUTLINE OF SOLUTION

With respect to a Cartesian coordinate system, the
wire grid is contained in the plane x=7% and is parallel
to a plane interface, at x=0, of two dielectrics. The
grid is composed of an array of wires parallel to the z
axis and spaced a distance d between centers. The wires
are taken to be of circular cross section and the diameter
is assumed to be small compared to d. The medium
(x>0) surrounding the wire grid is homogeneous with
a dielectric constant e. The homogeneous medium be-
yond the interface (x<0) has a dielectric constant €.

A plane wave with the electric field of magnitude E,
parallel to the z axis, impinges on the grid with angle
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Fig. 1—The wire grid parallel to a plane interface between
two dielectrics.

E; = Ey exp [i2a\~Y(x cos 6 -+ y sin 0) ] (1

where the time factor exp (iwt) has been omitted and
2281 = (ep) /%0 (2)

where A is the wavelength in the incident medium and
v is the permeability which is assumed to be the same
for both dielectrics. The currents induced on the wires
will all be of equal magnitude I but will have a progres-
sive change of phase between adjacent wires of 27A~1d
sin # radians.

In the absence of a grid a reflected wave

E, = EoR exp- [i(2r/N)(—2x cos 8 + ysin 8)] (3)
for x>0, and a transmitted wave
E, = E,T exp- [i(2x/N)(x cos 8’ + ysin 6)] (4

for x <0, will be set up. R and T are Fresnel reflection
coefficients given by

R=T-1= (K — K)/(K' + K) (5)

where
K

n/cos 8, K' = q'/cos®, 5= (u/e)'/?

l

and
sin 8 = (\'/\) sin 6 = (¢/¢')/2sin 8 = (y’/n) sin 6.
It is now necessary to consider the field E, of the wire

grid carrying a current of magnitude I. From a previous
analysis,® it is known that:

exp [i2rmy/d] exp [—(2w/d) | & — k| +/(m + Dsin6)2 — D?]

w

= 140)[ exp- [i{(2r/N\)y sin 8] Z

M=mc0

of incidence 6 as indicated in Fig. 1. The primary or
incident field is given by

2 E, M. T. Jones and S. B. Cohn, “Surface matching of dielectric
lenses,” J. Appl. Phys., vol. 26, pp. 452-457; April, 1955.

(6)

v/ (m -+ D sin 8)2 — D?

where D=d/\. To satisfy the boundary conditions at
the interface, a further secondary field E,® in the inci-
dent medium must be introduced, and further trans-
mitted field E,¢, given by
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el * R, .2 d|exp |—Qn/d)(x + k)~/(m + Dsin§)? — D?
Bur = 9 o lie Ny sing]. 35 T e [i2wmy/d] exp [ (2x/ )‘( + )4/ (m -+ Dsin 6) ] o
T o v (m + D sin §)? — D?
and
tuw] > T 12 d] e 2x/d - D sin )2 — (D')?
Bt = BT o lin N ysing]. 52 Lo [¢ T.rmy/ | exp [(2n/d)a~/(m in .) (D")?] ®
47 me—ee A/ (m + Dsin )2 — D2 exp [(2n/d) hn/(m =+ D sin 6)% — D?]
where D'=d/N. R, and T, are analogous to Fresnel where
reflection coefficients and are given by
ipwd d d fas\Y?
Ru=T,—1 Z, = <log——|—A + {4+ ——= (12)
27 2wa 27ra \2¢
_\/(m—}—D sin §)2— D?—+/(m~+D sin §)2—(D')? ©
+/(m—+D sin 6)*—D*++/(m~+D sin 6)2— (D')? with

12 [1 + Ry exp [—4rHD 'v/(m + Dsin 0)? — D?|
v/(m + D sin 6)2 — D?

(13)

1+ R_pexp [—4rHD'\/(m — Dsin0)® — D?] 2 ]

A/ (m — D sin )2 — D? m

The total field is then
E = Ei_'_Er"}_Ew"l_Ew8
= Et + Ewt

forx > 0,
for x < 0.

It can readily be verified that E and 8E/dx are continu-
ous at x=0.

The value of the current I is now found from the
additional boundary condition that E=-—1Iz; exp
[i(27/N\)y sin 8] where E is the field at the surface of the
wire and z; is the internal impedance of the wire. It
can be assumed that the field is uniform around the
wire since ¢<<d and a<<\ and hence z; can be calculated
by known methods and is given by!!

b il o(Ya)

" 2rali(ya)
where 7 = [{aw/ (¢ +iwe) V2 and 7 = [iaw(5 +iwe) |2 and
g, o, and & are the permeability, conductivity, and di-
electric constant of the wire material. I, and I; are
modified Bessel functions of or order of zero and unity.
For metallic wires, the displacement currents are neg-

ligible since wé<Ks even for microwaves. In addition, the
frequency is usually sufficiently high so that I')'/al >1

and hence
(,aw)”z 1+4
gi~ | — .
20 2Ta

Invoking the boundary condition at the wire leads to

(10a)

(10b)

_ Eod {exp [i(2m/N) h cos 8] + R exp [—i(2m/N) ki cos 0]}

where R, is defined in (9) and R..,, is obtained by re-
placing m with —m . The current I on the grid wires is
now specified in terms of known quantities. An immedi-
ate partial check is obtained by noting that I reduces
to (10) of an earlier paper!® when € approaches infinity
corresponding to a perfectly conducting plane at x=0.

Tae DistaNT FIELD

Although the complete solution of the problem has
now been obtained, it is very desirable to focus attention
on the distant scattered field. For example, if (x=5k)>>A
it is evident that only the terms for m =0 are significant
for d/AN<1/(1+sin |6]) and d/N' <1/(1+sin |6']). The
higher values of m correspond to evanescent waves
which are highly damped in the positive and negative
x directions. For larger values of d, additional undamped
waves can be scattered from the grid. The discussion
will be limited here to the smaller grid spacings satisfy-
ing the above inequality. The distant fields are then
given by

E = Egexp [i(2m/\) (% cos 8 + y sin 6) ]

[exp (i2xH cos 6)

ER
+{ ¢ +2dcost9

4 Rexp (—i2xH cos 6) ]

-exp [{(2m/N) - (—% cos § 4 ysin6) ]} (14)

(11

(9/2 cos 6)(1 + R exp [—i(4w/\) hcos8]) + Z,
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for large positive x, and

In .
E = {EOT + m T exp (—i2wxH cos 0)}

Cos

-exp [#(2x/N) (% cos 8’ + y sin 6")] (15)
for large negative x, where
R=T—1= (K — K)/(K'+ K) (16)

with K=17/cos 8 and K'=7"/cos 6’ with H=h/\.

The equivalent circuit, which may be taken as the
analog of the wire grid is shown in Fig. 2. The space to
the right of the interface, (x>0), is represented by a
transmission line of characteristic impedance K and
propagation constant I'. The line constants for the space
to the left (x<0) are K’ and I'". At x=4, the line is
shunted by an impedance Z,. The voltage V" across the
line and the current in the line J can now be identified
with the electric field E and the magnetic field com-
ponent H, respectively. The characteristic impedances
have been defined earlier and the propagation constants
are given by

T = i(27/\) cos @ and I = i(2x/N) cos @',

K, Zg K, T

| [
F—h—

Fig. 2—The equivalent circuit consisting of two semi-infinite
transmission lines with shunt element across one.

In the case of normal incidence (§=8"=0), (12) re-
duces to

2, i= I d+A]+<1+‘) d(ﬁw) (un
PN L% o Y 2ra\2s

{1+Rm exp | —4x(H/D)/m*—D?| 1 } 19

ms==1 '\/MQ—DQ
and
m2 — D — /m? — (ND)2
R = 2% V' (VD) . (19)
v/m?: — D* 4+ «/m? — (ND)?
NuMERIcAL DiscussioNn
Some numerical values of A for normal incidence

(0=0) and N'/A=1.57 are given in Table I. The ratio of
the wavelengths between the medium surrounding the
grid and the exterior medium (z.e., 1.57) is typical for a
dielectric lens. The case of H=0 corresponds to the grid
in the interface and H= o corresponds to the grid
within the dielectric lens medium when the interface is
effectively at an infinite distance. Since for reactive-
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TABLE 1
VALUES OF A

]
]

0.3 0.7 0.8
0.12620.2216
0.381310.4614
0.4227,0.5856
0.4532(0.7433
0.4535]0.7477

) 0.2

0.0170
0.0245
0.0246
0.0246
0.0246

0.4 \ 0.5 ‘ 0.6

0.0728
0.1027
0.1067
0.1068
0.1068

Y

i nn

0.0456
0.0567
0.0573
0.0574
0.0575

0.1210|0.1865
0.1620|0.2561
0.177410.2771
0.1808 | 0.2882
0.1809 [ 0.2882

niRwe, O
=g

8

wall matching, H is of the order %, it is seen that the
correction factor A can be appreciably different from the
corresponding value for H= = if D is of the order of
one half-wave length or greater. When the grid is in the
interface, the value of A can be expected to be influenced
equally by the electrical properties of both media. This
is demonstrated by considering the case H=0,0=60"=0,
whence?®

A—i 2 ! 20
T A Vw Dt v w2

which can be approximated by
A~ 0.301(N? + 1)D? (21)
subject to (VD)* and (D)*<«1. This can be rewritten
A =~ 0.601(k,D/27)? (22)

where ik, is the effective propagation constant for a thin
wire in an interface between two media whose propaga-
tion constants are tk(=2mwi/N) and k' (=2mwi/N).
Therefore subject to the above approximations

i [(R)? + (F)?1/2.

This simple formula for the effective propagation con-
stant was suggested previously on intuitive grounds."

ik, = (23)

CONCLUSION

This analysis provides an exact expression for the
equivalent shunt impedance Z, of a thin wire grid
situated parallel to the interface between two homo-
geneous dielectrics. The results indicate that Z, is de-
pendent on the distance % from the grid to the interface.
The error incurred, however, in neglecting this effect in
applications to surface-matching!? of dielectric lenses is
unimportant if the grid spacing d is less than about
0.5\ for normal incidence. This condition can become
more stringent when the E vector is not parallel to the
wires.?®

13 This particular formula is identical to one quoted to me by
G. D. Monteath of the British Broadcasting Corp. recently. He says
it can be obtained directly using a quasi-static method. I am in-
debted to Mr. Monteath for a stimulating discussion of this matter.

14 T, R. Wait and W. A. Pope,“ Input resistance of 1. f. unipole
aerials (with radial wire earth systems),” Wireless Eng., vol. 32, pp.
131-138; May, 1955.

15 T, R, Wait, “On the theory of reflection (at arbitrary incidence)
from a wire grid parallel to an interface between homogeneous
media,” Appl. Sci. Res., vol. BV, 1957 (in press).



