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w = ‘u + j [1 – F(6’, ko’)/K(ko’) 1 (87)

ko’ = {1 – koz (88)

..—
sin 6’ = (l/ko’)~l — l/t2. (89)

Eqs. (87), (89), (83), and (81) give the implicit relation

between x and v along the matching surfaces.

Fig. 11 shows the z plane for the even mode operation

of the coupled strip line. From it, it can be seen that the

tplane, the t’plane, and the w plane sketches are identi-

cal with the odd mode sketches, except for replacing

kO by k.. Eqs. (89) and (86) apply, and by analogy with

(85),

w = [K(ke)/K(ke’)][l – F(O, kJ/K(k J] + jl. (90)

Along y= O, by analogy with (87),

w = Z~+ j[l – F’(O’, ke’)/K(.ke’)]. (91)

Eq. (79) applies to Fig. 11 as well as to Fig. 10. When

it is integrated, and boundary

the result is
——

z = (a/r) in [#t’/p +

99

conditions are applied,

ti~~~i]. (92)

Along y = O this can be written as

1 – k. cosh2 ~x/a
t’=— .

1 + k. cosh2 irs/2a
(93)

By considering the value of t’at x =s/2 and at x = (w

+s/2) the expression fork. can be obtained:

k, = (tanh ~w/2a)(tanh T(W + s)/2!a). (94)

Eqs. (91), (89), (83), and (93) serve to give the implicit

relation between x and v along y = O.
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The Impedance of a Wire Grid Parallel to a

Dielectric Interface*
JAMES R. WAIT?

Summary-Analysis is given for the problem of reflection of a including the case where the wire spacing is COmp81rabh3
plane wave at oblique incidence on a wire grid which is parallel to a to the wavelength. His formulas have been reduced,
plane interface between two homogeneous dielectrics. It is assumed

tlr at the wire grid is a periodic structure and consists of thin cylindri-
extended, and applied by other authors since that

cd wires of homogeneous material. The equivalent circuit is derived time.3–11 A very illuminating treatment ha~; been given

where it is shown that the space on either side of the interface can by MacFarlane5 who indicated that a $ngle grid can
be represented by a transmission line, and the grid itself is repre- be represented by an impedance shunted across an
sented by a pure shunt element across one of the lines. infinite transmission line whose characteristic innped-

INTRODUCTION ante is proportional to the intrinsic impedance of the

: HERE HAVE been many investigations of the

T
electromagnetic properties of thin parallel wires

composed of conductive material. The first quan-

titative study was made by Lambl in 1898 who con-

sidered the plane wave incident normally on the grid.

He showed that if the diameter, 2a, of the parallel

wires was small, the reflection and transmission could

be varied by changing the spacing. In 1914, von Igna-

towsky2 made a very exhaustive analysis of the scatter-

ing of incident plane waves by single metallic grids
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surrounding infinite medium. He showed that this shunt
impedance was proportional to log (d/2~a) + F(O, d)

where F is a correction factor which is a function of

angle of incidence 6 and the spacing d.

Recently it has been suggested by Jones and Cohn12

that a wire grid, if suitably located near an air-inter-

face of a dielectric lens, can effectively simulate a quar-

ter-wave matching network. Considering the case where

the wire grid is embedded within the lens medium of

intrinsic impedance Z, it can be readily shown12 that

the conditions for the matching the lens to the exterior

(air) medium of intrinsic impedance Z’ are

Xg/Z = tan 26
and

Z’/Z = tanf 4

where @ is the “electrical” distance in radians from the

lens surface to the embedded grid whose impedance is

Zggix,.

The use of MacFarlane’s expression for Z, in the above

application is not strictly correct as the F(O, d) function

that he rigorously computed is only valid in the case

where the grid is in an infinite medium. For dielectric

Iens matching, the value of qi is usually of the order of

7r/4 radians corresponding to an air-lens interface to

grid separation of the order of ~ wavelength. It will be

shown that some error can be introduced if account is

not taken of the interface. The following analysis treats

fully the problem of a parallel wire grid embedded in a

homogeneous dielectric at a fixed distance from a plane

interface. While the analysis employs the terminology

appropriate to Iossless dielectrics, the extension to dissi-

pative media on either or both sides of the interface is

effected by regarding the respective dielectric constants

to be complex.

OUTLINE OF SOLUTION

With respect to a Cartesian coordinate system, the

wire grid is contained in the plane x = ?zand is parallel

to a plane interface, at x = O, of two dielectrics. The

grid is composed of an array of wires parallel to the z

axis and spaced a distance d between centers. The wires

are taken to be of circular cross section and the diameter

is assumed to be small compared to d. The medium

(x> O) surrounding the wire grid is homogeneous with
a dielectric constant c. The homogeneous medium be-

yond the interface (x< O) has a dielectric constant e’.

A plane wave with the electric field of magnitude EO

parallel to the z axis, impinges on the grid with angle

/ \ x

0

Y e

Fig. l—The wire grid parallel to a plane interface between
two dielectrics.

E, = Eo exp [i27rk-l(x cos 0 + y sin 8) ] (1)

where the time factor exp (id) has been omitted and

27X–1 = (ep) 1% (2)

where A is the wavelength in the incident medium and

p is the permeability which is assumed to be the same

for both dielectrics. The currents induced on the wires

will all be of equal magnitude 1 but will have a progres-

sive change of phase between adjacent wires of 2xh–~d

sin O radians.

In the absence of a grid a reflected wave

E, = EOR exp. [i(27r/h)(– a cos O+ y sin O)] (3)

for x >0, and a transmitted wave

Et = EOT exp, [i(27r/x’)(x cos 8’ + y sin o’)] (4)

for x <O, will be set up. R and T are Fresnel reflection

coefficients given by

R= T–l=(K’– K)/(K’+ K’) (5)

where

K = V-/COS e, K’ = T,//COS e’% ~ = (w/c) m

and

sin 8’ = (k’/A) sin 6’ = (E/e’) 1/2 sin O = (q’/q) sin O.

It is now necessary to consider the field l?~ of the wire

grid carrying a current of magnitude I. From a previous

analysis,l” it is known that:

;PUI +“ exp [i2mny/d] exp [— (2~/d) I x — h I ti(m + D sin 0)2 — D2
E. = ~ exp. [i(2m/A) y sin .9]. ~

d(mi-Dsin O)2 – D2
(6)

m==-cc

of incidence O as indicated in Fig. 1. The primary or where D = d/A. To satisfy the boundary conditions at

incident field is given by the interface, a further secondary field E~S in the inci-

dent medium must be introduced, and further trans-12E. M. T. Jones and S. B. Cohn, “Surface matching of dielectric
lenses,” J. Appl. Phys., vol. 26, pp. 452-457; April, 1955. mitted field Ew ~, given by
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——
‘“ R~ exp [i~mvY/d] exp [– (2~/d)(x + h)ti(w + D sin 0)2 -- D2]EW8 = ‘PaI~ exp [i(2m/A)y sin 0]. ~

~(m+ Dsin0)2 – D’
(7)

m=—.

and

—.
;WOI +“ T~ exp [i2irmy/d] exp [(2~/d) x4K+ D sin O)z – (D’):]

Emt = ~ exp [i(2m/h)y sin O]. ~
n=-= <(m + D sin 0)2 – D’ exp [(2~/d) lzti(m + D sin 0)’ -- Lx]

(8)

where D‘ = d/Ap. R~ and T~ are analogous to Fresnel where

reflection coefficients and are given by

Rm=T.–l
‘U=%[o’;+’)+(’+ i)izr;)’” “2)

./(m+D sin 6)2–D’– ~(m+D sin 0)2– (D’)2

= .J(m+D sin 0)2–D2+~(m+D sin 8)2– (D’)2
. (9) with

1 “ 1 + R.exp [–4~HD-1~(m +Dsin O)2 – D’]
A=—~

2 ~=~ [ ~(tn+ Dsin0)2 – D’ -

1 + R-m exp [–4~HB1~(m – D sin 0)2 – D’\ 2
+ ——

{(m – D sin 13)2– D’ 1 (13)
m

The total field is then

E= Ei+E, +Em+EW’ for x >0,

= Et+ Eu~ for x <0.

It can readily be verified that E and dE/dx are continu-

ous at x=0.

The value of the current 1 is now found from the

additional boundary condition that E = — Izi exp

[i(2T/X)y sin 6] where E is the fie~d at the surface of the

wire and z~ is the internal impedance of the wire. It

can be assumed that the field is uniform around the

wire since a<<d and a<<i and hence Zi can be calculated

by known methods and is given byl~

~lO(~a)
,zi = (lOa)

2ra11(ya)

where a = [@u/ (ti+iaz) ] 1/z and 7 = [i,zu(~+iui) ] 1/2 and

p, ;, and c are the permeability, conductivity, and di-

electric constant of the wire material. .Io and 11 are

modified Bessel functions of or order of zero and unity.

For metallic wires, the displacement currents are neg-

ligible since u~<<; even for microwaves. In addition, the

frequency is usually sufficiently high so that ~Ta I >>1

and hence

p(,J 1/2 1+~

()m.— .

‘i — 2U 27ra
(lOb)

Invoking the boundary condition at the wire leads to

where R~ is defined in (9) and R-m is obtained lby re-

placing m with —m . The current I on the grid wires is

now specified in terms of known quantities, An im medi-

ate partial check is obtained by noting that I reduces

to (10) of an earlier paperl” when e’ approaches infinity

corresponding to a perfectly conducting plane at x = O.

THE DISTANT FIELD

Although the complete solution of the problem has

now been obtained, it is very desirable to focus attention

on the distant scattered field. For example, if (x= k) >>A

it is evident that only the terms for m = O are significant

for d/h<l/(l+sin 161) and d/h’< 1/(l+sin /0’] )1. The

higher values of m correspond to evanescent waves

which are highly damped in the positive and negative

x directions. For larger values of d, additional unda roped

waves can be scattered from the grid. The discussion

will be limited here to the smaller grid spacings satisfyi-

ng the above inequality. The distant fields are then

given by

E = EO exp [i(2T/h) (z cos o + y sin 0) ]

+

+

{
EOR + Zd fis ~ [exp (i2z-H cos 0)

R exp (– i27rH cos O)]

. exp [~(2m/A) o(-z cos 0 + y sin 0) ]
}

(14)

~ = god { exp [i(2m/x) L cos O] + R exp [– i(27r/x)lz cos O] }

(?/2 cos 0)(1 + R exp [–i(4m/k) h cos o]) +2,
(11)
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for large positive x, and

{

Iq
E= EOT+ T exp (– i27rH cos O)

2d cos O }

. exp [i(2m/k’)(x cos 0’ + y sin d’)] (15)

for large negative x, where

R= T–l=(K’– K)/(K’+K) (16)

with K = q/cos O and K’= q’/cos 8’ with H= h/A.

The equivalent circuit, which may be taken as the

analog of the wire grid is shown in Fig. 2. The space to

the right of the interface, (x> O), is represented by a

transmission line of characteristic impedance K and

propagation constant I’. The line constants for the space

to the left (x <O) are K’ and I“. At x =h, the line is

shunted by an impedance ZQ. The voltage V across the

line and the current in the line J can now be identified

with the electric field E and the magnetic field com-

ponent & respectively. The characteristic impedances

have been defined earlier and the propagation constants

are given by

r = i(2w/h) cos 0 and I“ = i(2r/x’) cos 0’.

I

I

-L

K’, r’ Zg K,r

Fig. 2—The equivalent circuit consisting of two semi-infinite
transmission lines with shunt element across one.

In the case of normal incidence (0 =0’= O), (12) re-

duces to

and

NUMERICAL DISCUSSION

Some numerical values of A for normal incidence

(6= O) and A’/X = 1.57 are given in Table I. The ratio of

the wavelengths between the medium surrounding the

grid and the exterior medium (i.e., 1.5 7) is typical for a

dielectric lens. The case of It= O corresponds to the grid

in the interface and H= w corresponds to the grid

within the dielectric lens medium when the interface is

effectively at an infinite distance. Since for reactive-

TABLE I

VALUESOFA

D= 0.2 0.3 0.4 0.5 0.6 0.7 0.8
————————.

H=O 0.0170 0.0456 0.0728 0.1210 0.1865 0.1262 0.2216
=& 0.0245 0.0567 0.1027 0.1620 0.2561 0.3813 0.4614
=+ 0.0246 0.0573 0.1067 0.1774 0.2771 0.4227 0.5856
=+ 0.0246 0.0574 0.1068 0.1808 0.2882 0.4532 0.7433
=m 0.0246 0.0575 0.1068 0.1809 0.2882 0.4535 0.7477

wall matching, H is of the order ~, it is seen that the

correction factor A can be appreciably different from the

corresponding value for H= co if D is of the order of

one half-wave length or greater. When the grid is in the

interface, the value of A can be expected to be influenced

equally by the electrical properties of both media. This

is demonstrated by considering the case H= O, 0 = f?’= O,

whencels

A=~
2

~ (20)
... drn’ – D’ + ~m’ – (ND)2 – m

which can be approximated by

A m 0.301 (N’ + 1)D2 (21)

subject to (lVD)4 and (D)4<<I. This can be rewritten

A N 0.601 (k@/2~)2 (22)

where ik. is the effective propagation constant for a thin

wire in an interface between two media whose propaga-

tion constants are ;k( = 2mi/A’) and ik’( = 2ri/A’).

Therefore subject to the above approximations

ike = iv’[(k)’ + (k’)2_j/2. (23)

This simple formula for the effective propagation con-

stant was suggested previously on intuitive grounds. 14

CONCLUSION

This analysis provides an exact expression for the

equivalent shunt impedance Z~ of a thin wire grid

situated parallel to the interface between two homo-

geneous dielectrics. The results indicate that Z~ is de-

pendent on the distance h from the grid to the interface.

The error incurred, however, in neglecting this effect in

applications to surface-matchinglz of dielectric lenses is

unimportant if the grid spacing d is less than about
0.5h for normal incidence. This condition can become

more stringent when the E vector is not parallel to the

wires. 15

la This particular formula is identical to one quoted to me by
G. D. Monteath of th: British Broadcasting Corp. recently. He says
it can be obtained directly using a quasi-static method. I am in-
debted to Mr. Monteath for a stimulating discussion of this matter.
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